Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex.
نویسندگان
چکیده
UNLABELLED The coordinated mechanisms balancing promotion and suppression of dendritic morphogenesis are crucial for the development of the cerebral cortex. Although previous studies have revealed important transcription factors that promote dendritic morphogenesis during development, those that suppress dendritic morphogenesis are still largely unknown. Here we found that the expression levels of the transcription factor Sox11 decreased dramatically during dendritic morphogenesis. Our loss- and gain-of-function studies using postnatal electroporation and in utero electroporation indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused precocious branching of neurites and a neuronal migration defect. We also found that the end of radial migration induced the reduction of Sox11 expression. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. SIGNIFICANCE STATEMENT Because dendritic morphology has profound impacts on neuronal information processing, the mechanisms underlying dendritic morphogenesis during development are of great interest. Our loss- and gain-of-function studies indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused a neuronal migration defect. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex.
منابع مشابه
This Week in The Journal
Cortical projection neurons are born near the ventricular surface and migrate radially to form cortical layers. Through most of their journey, the neurons have a bipolar morphology with a single, unbranched leading process that guides them toward the pial surface. Dendrites do not begin to grow until after neurons reach their final position. Indeed, growth of a complex dendritic arbor might be ...
متن کاملFoxp1 Regulates Cortical Radial Migration and Neuronal Morphogenesis in Developing Cerebral Cortex
FOXP1 is a member of FOXP subfamily transcription factors. Mutations in FOXP1 gene have been found in various development-related cognitive disorders. However, little is known about the etiology of these symptoms, and specifically the function of FOXP1 in neuronal development. Here, we report that suppression of Foxp1 expression in mouse cerebral cortex led to a neuronal migration defect, which...
متن کاملCross-species functional analyses reveal shared and separate roles for Sox11 in frog primary neurogenesis and mouse cortical neuronal differentiation
A well-functioning brain requires production of the correct number and types of cells during development; cascades of transcription factors are essential for cellular coordination. Sox proteins are transcription factors that affect various processes in the development of the nervous system. Sox11, a member of the SoxC family, is expressed in differentiated neurons and supports neuronal differen...
متن کاملHeadless Myo10 is a regulator of microtubule stability during neuronal development.
Stabilized microtubules are required for neuronal morphogenesis and migration. However, the underlying mechanism is not fully understood. In this study, we demonstrate that myosin X (Myo10), which is composed of full-length myosin X (fMyo10) and headless myosin X (hMyo10), is important for axon development. fMyo10 is involved in axon elongation, whereas hMyo10 is critical for Tau-1 positive axo...
متن کاملMANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) resident protein with neuroprotective effects. Previous studies have shown that MANF expression is altered in the developing rodent cortex in a spatiotemporal manner. However, the role of MANF in mammalian neurogenesis is not known. The aim of this study was to determine the role of MANF in neural stem c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 21 شماره
صفحات -
تاریخ انتشار 2016